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CLAST: Contrastive Learning for
Arbitrary Style Transfer
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Abstract— Arbitrary style transfer aims at migrating the
style of a reference style painting to a target content image.
Existing methods find it challenging to achieve good content
fidelity and style migration at the same time. Moreover, they
all rely on manually defined content and style, which is of
limited universality and robustness. In this paper, we propose to
introduce contrastive learning into style transfer, instructing the
network to automatically learn to model the structural content
and artistic style based on natural contrastive relationships in
style transfer. Compared with existing methods, our learned
modeling of content and style is more robust and universal.
In addition, we further propose instance-wise contrastive style
losses and a patch-wise contrastive content loss to guide style
transfer. Combining the proposed contrastive losses and two
self-reconstruction strategies, we develop a new style transfer
framework, which is pluggable and can be flexibly applied to
various style transfer modules. Experimental results demonstrate
that our method has strong flexibility and synthesizes stylized
images with higher quality.

Index Terms— Style transfer, image synthesis, contrastive
learning, image processing, self-supervised learning.

I. INTRODUCTION

ARTISTIC images and paintings are visually attractive
and impressive, thus playing an important role in

people’s daily life. However, creating artistic imagery is
labor-consuming and usually takes even experienced artists
days of efforts. Nowadays, with the rapid development of the
internet and mobile devices, an increasing number of photos
and videos are captured and shared.

In order to meet people’s growing aesthetic needs, the tech-
nique of style transfer is created to automatically transferring
a specific artistic style to a photo, benefiting a wide range
of users without professional artistic creation skills. As an
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attractive topic, style transfer has gained increased research
attention in recent years and given birth to a great number of
industrial products, such as Prisma and DeepArt.

The success of neural networks greatly promotes the devel-
opment of style transfer. Gatys et al. [1] first proposed to
use pretrained image classification networks to encode the
content and style, and designed an iterative-optimization-based
method: neural style transfer (NST). Later, a series of works
have been done for accelerating the transfer procedure [2],
improving the generation effect [3], [4], or maintaining tem-
poral consistency for videos [5], [6], [7]. Some subsequent
works [7], [8], [9], [10], [11] further enlarge the application
range to arbitrary photos and artistic style images, i.e., arbi-
trary style transfer.

Modeling the abstract concepts of content and style is
the core of arbitrary style transfer. Among existing methods,
the content similarity between different images is usually
measured by the L1 or L2 distance of image classification
features [1], some also adopt the modeling based on local
self-similarity [3]. As for the modeling of style, many works
adopt global statistics of pretrained neural networks, such as
the traditional Gram-based style loss [1]. Local patches can
also represent the characteristic of paintings [12]. Neverthe-
less, these modelings of content and style are all manually
defined with pretrained image classification networks, which
are counter-intuitive and not flexible enough to capture the
extremely diverse content and style features. For example,
SANET [9] is one of state-of-the-art arbitrary style transfer
methods using the traditional content modeling of [1] and
mean-variance-based style modeling. However, as illstruted in
Fig. 1(b), SANET destroys the structure of the flowers and
generates ghosting human faces due to imbalanced stylization.

In this paper, we revisit and improve style transfer with a
new modeling for content and style. Different from existing
methods, we propose to learn the representation automati-
cally via the self-supervised learning strategy of contrastive
learning [13] that measures the similarities and dissimilarities
between sample pairs. Our method comes from how humans
intuitively observe artworks as shown in Fig. 1(a). A person
may not have exact definitions for content or style, but she/he
can judge whether two images match or not. These matching
and mismatching relations are natural contrastive relationships,
inspiring us to design self-learning style transfer strategies.

On this basis, we propose contrastive learning for arbi-
trary style transfer (CLAST). Specifically, the modeling
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Fig. 1. We imitate human’s perception of art by contrastive learning. Bene-
fiting from our appropriate modelings and effective loss designs, our method
CLAST outperforms existing methods in terms of content preservation, style
migration, and overall visual effects.

of style is learned in a contrastive self-supervised way on
painting images alone. The learned modeling is then used
to develop instance-wise contrastive style losses. With the
help of our robust modeling, the proposed new style losses
are naturally in line with people’s perception of art, thus
effectively guiding the style transfer network to render artistic
effects. Meanwhile, we design a patch-wise contrastive content
loss and learn the modeling of content during the training of
style transfer. Compared with the traditional content loss that
employs pretrained and fixed image classification networks,
our on-the-fly content encoder can better fit various artistic
types. Finally, we develop a pluggable encoder-decoder-based
style transfer framework, which can be flexibly combined with
various existing style transfer modules.

In conclusion, CLAST has four advantages over previous
methods. 1) Style fidelity: our data-driven style encoding can
render more consistent color and texture; 2) Content main-
tenance: the on-the-fly learned content encoding can better
keep the detailed structure of the content image; 3) Style-
content balance: existing methods are either over-stylized or
under-stylized, while our method can adaptively balance the
content and style for better overall quality; 4) Flexibility: our
framework is pluggable and can be applied to various style
transfer modules to improve their performance. Code will be
released upon publication of the paper.

Our contributions are summarized as follows:

• We propose to model the content and style based on
the natural contrastive relationships in style transfer.
Compared with previous manually designed style transfer
modelings, our representation is automatically learned,
and thus is more intuitive, robust and flexible.

• We design a novel training scheme for contrastive arbi-
trary style transfer. Benefiting from our patch-wise con-
trastive content loss and instance-wise contrastive style
losses, our encoders can not only serve as good feature
extractors but also guide balanced style transfer.

• We develop a universal arbitrary style transfer framework
CLAST, which can be flexibly applied to various styliza-
tion modules. Extensive experimental results show that
CLAST achieves superior performance both qualitatively
and quantitatively.

The paper is organized as follows. We firstly review existing
researches on style transfer, which are divided into three
categories according to their modeling of style. After that,
in Sec. III, we propose to automatically learn the modeling
of content and style based on natural contrastive relationships
in style transfer. We further design instance-wise contrastive
style losses and a patch-wise contrastive content loss to train
the proposed style transfer framework. Later in Sec. IV,
we conduct both qualitative and quantitative comparison
experiments to demonstrate the superiority of the proposed
method. Extensive performance analyses, ablation studies, and
applications are also provided. Finally, in Sec. V, we draw
conclusions and discuss potential future research directions.

II. RELATED WORK

A. Image Style Transfer

As analyzed in the previous section, the key issue in
arbitrary style transfer is how to get an appropriate modeling
of content and style. While existing methods mostly adopt
the traditional content modeling [1], the style modelings are
rather various. Based on the modeling of style, image style
transfer algorithms can be divided into three categories: global-
statistics-based, local-patch-based, and GAN-based.

1) Global-Statistics-Based Methods: Early traditional meth-
ods [14], [15], [16] used the image representations based on
hand-crafted low-level features, resulting in weak flexibility
and incomplete extraction. The development of convolutional
neural networks breaks the limitation of traditional repre-
sentations, Gatys et al. [1] proposed the pioneering Neural
Style Transfer [1], which is the first to utilize a deep neural
network to semantically model image style. Neural Style
Transfer successfully modeled image style as the correlation
of the features in the form of Gram matrix, and further
carried out style transfer with an iterative optimization process.
This approach, especially the innovative Gram-matrix-based
style modeling, inspired other researchers and gave birth to
subsequent works.

To avoid the slow optimization procedure, this method
is accelerated by [2], [17], which replaced online
back-propagation with trainable feed-forward networks
in a per-model-per-style mode. [18] further improved
structure preservation by designing customized sub-networks.

Inspired by [1], researchers came up with other global
statistics to characterize image styles, such as mean, vari-
ance [8], and co-variance [19], [20], [21], [22], and proposed
the corresponding holistic feature modulation strategies of
AdaIN [8] and WCT [19]. In order to better align style features
with content features, attention-based feature modulations [9],
[23], [24], [25] were designed and achieved promising
results. Multi-scale features [26] can provide rich information.
Accordingly, many style transfer models adopt multi-layer
network architectures [9], [10]. Recently, optimal-transport-
based [3] and moment-matching-based [27] modulations were
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also proposed. Besides, Kotovenko et al. [28] proposed to
optimize strokes rather than pixels to achieve more artistic
results.

2) Local-Patch-Based Methods: Image style can be natu-
rally modeled as local patches [29], [30], [31] to simulate
the brushstroke and artistic textures in paintings. CNNMRF
[12], [32] extracted local patches from the feature maps to
model image styles and successfully rendered photo-realistic
images. PatchSwap [33] replaced the content feature patches
with the best matched style feature patches, but often repet-
itively used the same patches to cause wash-out artifacts.
To solve this problem, Deep Reshuffle [34] softly encouraged
the uniform usage of patches. Avatar-Net [10] decorated the
image with the style patterns according to the semantic spatial
distribution of the content image and applied a multi-scale
style transfer, but it usually cannot represent the local and
global style patterns at the same time.

In addition, both global-statistics-based and local-patch-
based methods use manually defined style modelings. Such
modeling is either less flexible to capture the full style
information, or less compatible with the content features,
resulting in unsatisfactory style patterns or imbalance between
the content and style. By comparison, our method learns
disentangled and compatible style and content features through
contrastive learning and shows promising results.

3) GAN-Based Methods: It is worth noting that Generative
Adversarial Networks (GANs) also achieves impressive results
in generating images of a certain domain. GAN aims to
generate plausible images following the target image dis-
tribution, which is suitable to learn images with a certain
style. Therefore, solutions based on GAN perform well in
collection style transfer, in which the target style is defined by
a collection of images, such as Van Gogh’s painting collection.
CycleGAN [35] proposed an effective cycle consistency con-
straint to build a pixel-wise relationship between the photos
and paintings, and precisely imitated Monet’s landscape paint-
ings. CartoonGAN [36] focused on Cartoon and emphasized
edge features. Since paintings are often more abstract than
photos, making the cycle consistency less available, AST [37]
proposed a style-aware content loss to automatically determine
how abstract the content feature should be extracted. Besides,
feature disentanglement is used in [38], [39], and [40] to
extract the compatible content and style features.

Although GAN-based methods render high-quality artistic
images, they can only handle one or several fixed artistic types,
thus is incapable of arbitrary style transfer. In comparison, our
framework can handle any artistic style type, including those
unseen during training.

B. Contrastive Learning

The main idea of contrastive learning is to bring posi-
tive pairs closer and spread negative pairs apart [41], [42].
By learning what kinds of samples should be viewed as the
same and what kinds of samples are different, networks learn
to extract discriminative features.

Instead of defining loss functions to directly measure the
difference between a model’s output and a fixed target,
contrastive losses [13] aims to measure the similarities of

sample pairs in a representation space. Some recent works
focused on training neural networks from scratch [41], [42],
others explored to remove the dependency on negative samples
[43], [44]. Contrastive learning has many improved versions,
such as combining weak and strong augmentation [45], multi-
view [46] and contrastive clustering [47]. It also has been
widely used in various scenarios, such as object detec-
tion [48], domain adaptation [49], [50] and image-to-image
translation [51].

Under the common higher-level topic of image generation,
CUT [51] discussed to utilize contrastive relationships between
two domains as an adjunct to adversarial learning, based on
which to further perform image-to-image translation. However,
the discussion and method of CUT only considered two
domains. By comparison, in the scenario of arbitrary style
transfer where each artistic style belongs to its own domain,
the input and output images actually involve infinite domains.
Therefore, our task is more general and challenging than that
of CUT.

III. CONTRASTIVE STYLE TRANSFER

A. Motivation

The main idea of contrastive learning is to bring posi-
tive pairs closer and spread negative pairs apart [41], [42].
By learning what kinds of samples should be viewed as the
same and what kinds of samples are different, networks are
trained to be effective feature extractors. Contrastive learning
has been widely used in various scenarios, such as object
detection [48] and image-to-image translation [51]. However,
to our knowledge, the high correlation between contrastive
learning and style transfer has never been discussed.

In this paper, we explore the natural contrastive relationships
in style transfer. Arbitrary style transfer aims to migrate the
artistic patterns from the style image and preserve the content
structure of the content image. That is, the stylization result
should be artistically close to the style image at the image
level, and structurally close to the content image for each local
area as shown in Fig. 2(a). We make use of these natural
contrastive relationships to learn the style/content modelings
and design style transfer frameworks.

B. Contrastive Style Modeling

In arbitrary style transfer, the stylization result is expected
to share the same artistic style as the reference style image
as shown in Fig. 2(b). Naturally, we come up with the
idea of assigning the reference style image as the positive
sample and assigning other different artistic images as negative
samples. However, before the whole style transfer framework
is trained, the stylization result is not readily available. To
solve this chicken-and-egg problem, we separate the style
feature extraction and style transfer processes, and propose
a new contrastive pair design.

Intuitively, two patches randomly cropped from the same
painting share almost the same artistic style most of the
time. Therefore, we assign them as positive pairs as shown
in Fig. 4(a). Since the style of the two patches only differs
in rare cases, we consider these mismatching pairs as training
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Fig. 2. The paradigm of our contrastive style transfer. We use instance-wise
contrastive relationships for style and patch-wise contrastive relationships for
content. In (b), the five paintings from left to right are: The Transportation
of Marble at Carrara by Nikolai Ge, Sorrento by Nikolai Ge, Brunhild (The
Valkyrie) by Odilon Redon, Young Girl in Beret by Amedeo Modigliani, and
Quai aux fleurs by Louis Vivin. According to wikiart.org, these paintings
belong to Romanticism, Romanticism, Symbolism, Expressionism, and Naïve
Art (Primitivism).

noises. Experimental results in later sections show that these
rare noises hardly affect the effectiveness of our method. With
positive and negative samples available, we can now start
training a style feature extractor.

Style modeling is learned through the self-supervised task
of identifying whether two patches belong to the same image.
Specifically, our network consists of a style encoder Es and
a projection head Hs , where the output of Hs is a unit-
length vector. The network is trained with painting image
data. Considering a query sample S, its positive sample S+

is randomly cropped from the same painting, while negative
samples S−

i , i ∈ {1, 2, . . . , N } are patches cropped from
other paintings. Note that the negative samples might belong
to the same painter or art genre as the positive sample.
It is because each image has its own style in arbitrary style
transfer. After random cropping, we apply color jittering,
discoloration, blurring and flipping with a certain probability.
These augmentations encourage the style encoder to extract
the color-related and texture-related style at the same time.
Otherwise, the samples can be easily classified by simply
distinguishing the colors, causing the style encoder to ignore
texture information to a certain extent.

Similar to classical contrastive learning, our training objec-
tive is as follows:

Ls_pre = ES[LNCE(Hs(Es(S)),

Hs(Es(S+)), Hs(Es(S−)))], (1)

where LNCE stands for the InfoNCE loss [52]:

LNCE( f, f +, f −) = −log
σ( f, f +)

σ ( f, f +) +
∑

i σ( f, f −

i )
,

σ ( f, g) = exp( f · g/τ), (2)

and τ is the temperature hyper-parameter. Practically, this is
an (N + 1)-way cross-entropy loss for classifying the positive
sample f + from other negative samples f −.

Though the style encoder Es can well extract both the color-
related and texture-related style information, the projection
head Hs tends to focus more on semantic information, i.e.,
texture information according to MoCo [41]. So we train
another dual projection head Hcolor which has the identical
architecture as Hs but focuses more on colors. Through
dividing the style image into 3-by-3 patches and exchange their
order, i.e., jigsaw reshuffling, we obtain a structure-destroyed
but color-preserved view, noted as S j ig . As shown in Fig. 4(b),
given a query S j ig , its positive sample S+

j ig has the same color
appearance but different jigsaw order. The negative samples
S−

j ig instead have the same jigsaw order as S j ig , but their
colors are distorted. Under such design, Hcolor is encouraged
to utilize more color information to correctly distinguish the
positive from the negatives. The training objective for Hcolor
is similarly formulated:

Lcolor_pre = ES j ig [LNCE(Hcolor (Es(S j ig)),

Hcolor (Es(S+

j ig)), Hcolor (Es(S−

j ig)))]. (3)

Now we compare our Es with the widely used classification-
pretrained VGG [53]. We collect 40 Monet and Van Gogh
paintings, and visualize their style features in Fig. 5. For both
the two networks, we use deep features of the conv4_1 layer.
The features are reshaped to one-dimensional vectors and
projected onto a 2D plane by the principal component analysis
(PCA) algorithm. While VGG entangles Monet’s paintings
with Van Gogh’s, our Es clearly distinguishes the paintings of
the two artists, indicating that our style modeling can extract
style information more comprehensively.

C. Instance-Wise Style Losses

Next, we use the pretrained style feature extractor Es , Hs
and Hcolor to guide style transfer.

During pretraining, for a feature vector of any style sample,
the projection heads Hs and Hcolor are trained to bring the
feature vector of its positive sample closer, and spread the
feature vectors of negative samples apart, where the similarity
of features is measured by dot production. Namely, for two
style samples x and y, if they have the similar texture-related
style, Hs(Es(x)) · Hs(Es(y)) will be close to 1, otherwise
it will be close to 0. The same is true for the color-related
style. Therefore, they can be directly used to measure the style
difference between two images.

Denoting Is as the input style image and Ir as the stylization
result, we first extract the corresponding style representations
Fs = Es(Is), Fr = Es(Ir ). Then, we obtain the feature vectors
with projection heads:

vs
s = Hs(Fs), vc

s = Hcolor (Fs),

vs
r = Hs(Fr ), vc

r = Hcolor (Fr ).

Finally, we minimize the style difference between Is and Ir
during the training of style transfer network:

Ls = EIs ,Ir [Ds(Is, Ir )] = EIs ,Ir [1 − vs
s · vs

r ], (4)
Lcolor = EIs ,Ir [Dcolor (Is, Ir )] = EIs ,Ir [1 − vc

s · vc
r ], (5)

where Ls and Lcolor are the instance-wise texture-related and
color-related style loss, respectively.
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Fig. 3. The overview of our arbitrary style transfer framework. Left: the proposed contrastive style transfer scheme. Right: content identity training (top)
and style identity training (bottom). Blue denotes encoding the content, red denotes encoding the style, and green denotes training losses. Locks represent
that the parameters are not updated during training.

Fig. 4. The training of contrastive style encoding. Our contrastive style
modeling has three network modules: style encoder Es and two projection
heads Hs and Hcolor . We first train Es and Hs , and then train Hcolor alone
with fixed Es . When training Hcolor , we use jigsaw reshuffling to destroy the
content structure of the images.

Fig. 5. Style feature visualization results. Blue points indicate Monet’s paint-
ings while orange points indicates Van Goph’s paintings. While classification-
pretrained VGG [53] entangles the feature representations of the two artists,
our style encoder Es clearly distinguishes two styles.

Note that different from existing methods [1], [8], [32]
which all define the style manually, our modeling of style
is automatically learned by simply determining whether or
not two images share the same style. Our instance-wise
contrastive style losses are also naturally constructed according
to the automatic learning process. Therefore, our modeling
of style and instance-wise style losses are more robust and
can lead to better stylization quality, which is shown in later
sections.

Fig. 6. The feature comparison between our content encoder Ec and the
widely used pretrained VGG network. Points of the same color indicate a
pair of photo and painting which shares the same content structure. Example
photo-painting pairs are shown in (b), where the border of the pairs matches
the color of the dots in (a).

D. Contrastive Content Modeling and Patch-Wise
Content Loss

In arbitrary style transfer, every patch on the stylization
result should be similar in structure to the corresponding
patch at the same location on the content image, and be
different from other patches as illustrated in Fig. 2(b). Based
on this property, we design our contrastive content modeling
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and the corresponding patch-wise content loss. During the
training of style transfer, even if the stylization result is not
properly rendered (for example, at the beginning of training),
the content structure can be similar to the content reference
image. Therefore, different from style encoding where we first
pretrain then fix the style encoder, content encoding can be
trained along with the whole style transfer framework.

To perceive the content structure from various scales, we use
multi-layer features. Denoting E l

c as the l-th selected layer of
the content encoder, Ic as the content image, and Ir as the
stylization result, we randomly choose Kl spatial locations on
the feature map from E l

c, and obtain a stack of features, i.e.,
the content features of Kl different patches:

E l
c(Ic)1, E l

c(Ic)2, . . . , E l
c(Ic)Kl ,

E l
c(Ir )1, E l

c(Ir )2, . . . , E l
c(Ir )Kl ,

where E l
c(·)k is the content feature of the patch on the k-

th location. Similar to style encoding, we then use a pro-
jection head H l

c to map features into an embedding space
8k

l (I ) = H l
c(E l

c(I )k). Finally, we maximize the similarity
between patches of the same location on Ic and Ir , and reduce
the similarity of patches on different locations for Ic. The
contrastive content loss is formulated as follows:

Lc = EIc,Ir ,k ̸=k′,l [LNCE(8k
l (Ic), 8

k
l (Ir ), 8

k′

l (Ic))]. (6)

Compared with the traditional content modeling [1] which
manually defines the content with pretrained image classifiers,
our contrastive modeling is trained on-the-fly with the style
transfer framework by simply assigning the natural positive
and negative pairs. In this way, the content encoder can
perceive content structure under various styles and adaptively
learn the modeling of content structure. Therefore, our con-
trastive modeling can better perceive the content structure
across various artistry, bringing better content preservation and
content-style trade-off ability.

To compare with the traditional content modeling, we col-
lect 10 photo-painting pairs. Within each pair, the photo and
painting share the same content, some of them are shown in
Fig. 6(b), others are shown in the supplementary material. The
content features extracted by our content encoder Ec and pre-
trained VGG are visualized in Fig. 6(a). The implementation
details are the same as the style feature visualization conducted
in Sec. III-B. Our Ec has smaller intra-pair and larger inter-
pair distances, demonstrating our modeling of content has a
better content extraction ability.

E. Overall Framework

1) Network Architecture: As shown in Fig. 3, our style
transfer network (STNet) consists of a content encoder Ec,
a style encoder Es , a pluggable style transfer module M , and
a decoder D. Denoting the input content image as Ic, the style
image as Is , we first use Ec and Es to extract the content
and style feature of Ic and Is , obtaining Fc = Ec(Ic) and
Fs = Es(Is), respectively. Then, the module M fuses Fc and
Fs , where M can be various style transfer modules, including
but not limited to AdaIN [8], SANET [9], and dynamic
inter-channel filter (DICF) [7]. Finally, the decoder projects
the fused representation back to the image domain. In addition,

we add multi-level AdaIN skip connections between the style
encoder and the decoder. Es , Hs and Hcolor are not updated
during the training of the whole style transfer framework.

Note that the architecture of our sub-networks is replaceable
and the selection of module M is arbitrary, our training scheme
and contrastive losses can be flexibly applied to various
existing style transfer methods.

2) Style Transfer Loss: We use a combination of our
contrastive style losses Eqs. (4)-(5), and the contrastive content
loss Eq. (6) to guide style transfer:

Lsty = λcLc + λsLs + λcolorLcolor , (7)

where λc, λs , and λcolor balance different loss functions.
As shown in Fig. 3, two encoders Ec and Es are used for

both generating Ir as parts of STNet and guiding STNet as
feature extractors in the loss function. The difference between
Ec and Es is that, Es together with the two projection heads
Hs, Hcolor are first trained on paintings in the style modeling
training process with Eq. (1), and then fixed to guide the
training of style transfer. In comparison, Ec and its correspond-
ing content projection head Hc is trained along with STNet.
Note that most existing methods use a shared pretrained
VGG encoder [53] for extracting both the content and style
[1], [8], however, sharing encoder may lose domain-specific
information and suffer from visual degradation. Our method
uses independent encoders instead, which can extract more
robust and compatible features.

3) Content Identity: In order to prevent the network from
making unexpected changes to the content structure, we intro-
duce a content identity training scheme. Intuitively, we restrict
the image to remain unchanged after being stylized by itself.
Denoting Irc as the style transfer result of using Ic for both
the content and style input, the proposed identity contrastive
content loss is:

Lrc = EIc,Irc,k ̸=k′,l [LNCE(8k
l (Ic), 8

k
l (Irc), 8

k′

l (Ic))]. (8)

4) Style Identity: For better migrating artistic styles, we pro-
pose a reconstruction task of restoring textures and colors
with the guidance of the style input. Specifically, we first
smooth the texture of the painting image Is by RTV [54], and
jitter the color. The style-distorted painting image is denoted
as I ′

s . Then we use the original painting image Is to stylize
I ′
s , and expect the stylization result Iss to be identical to Is .

We use our instance-wise contrastive style losses and L2 loss
to guide this process:

Lrs = EIs ,Irs [λcs(Ds(Is, Irs) + Dcolor (Is, Irs))

+ ∥Is − Irs∥
2
2], (9)

where Ds and Dcolor are the same as in Eqs. (4)-(5).
5) Full Objective: Our final training objective consists of

style transfer, content identity, and style identity:

L = Lsty + λrcLrc + λrsLrs, (10)

where λrc and λrs balance different loss functions.
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Fig. 7. Comparison results of our DICF-CLAST and state-of-the-art arbitrary style transfer methods. AdaIN [8] fails to render the artistic pattern of the
style image. Avatar-Net [10] cannot preserve the detailed structure, making the objects hard to identify. SANET [9] produces appealing style textures but
the detailed content structure is distorted. DICF [7] and ArtFlow [11] can better characterize the content details. However, DICF suffers from severe color
deviation and ArtFlow cannot completely peel off colors from the content image. By comparison, our method achieves satisfactory content preservation and
style fidelity at the same time.

Fig. 8. Comparison of AdaIN-CLAST and AdaIN [8]. Our AdaIN-CLAST
renders more vivid style effects and preserves the pivotal structure better
(e.g., the lion eyes in row 1).

IV. EXPERIMENTAL RESULTS

A. Implementation Details

To show the flexibility of our method, we apply it to
three style transfer modules: AdaIN [8], SANET [9] and
DICF [7], resulting in AdaIN-CLAST, SANET-CLAST, and
DICF-CLAST, respectively. The networks are trained with
MS-COCO [55] as the content and WiKiArt [56] as the style.
Style encoding pretraining takes 200 epochs and the whole
style transfer network takes 5 epochs. Loss weights are set to:
λc = 1, λs = 3, λcolor = 30, λrc = 1, λcs = 15, λrs = 2. Note
that CLAST can handle any input size and the images we use
in experiments are all unseen during training. Please refer to
the supplementary material for more detailed training settings
and network architectures.

B. Style Transfer Results

We compare our DICF-CLAST with five state-of-the-art
arbitrary style transfer methods: AdaIN [8], Avatar-Net [10],

Fig. 9. Comparison of SANET-CLAST and SANET [9]. Our SANET-
CLAST eliminates distorted structure and weird repeated patterns, achieves
better balance between the content and style.

SANET [9], DICF [7] and ArtFlow [11]. We also further com-
pare AdaIN, SANET, and DICF with our improved CLAST
versions in detail.

1) Visual Effects: Fig. 7 shows the style transfer results
of DICF-CLAST and other above-mentioned state-of-the-art
algorithms. AdaIN [8] synthesizes the stylized images by
simply adjusting the mean and variance of the feature map.
Its results are less visually attractive and often retain the
colors from the content image to some extent. This is because
the traditional content modeling is incapable of completely
peeling off colors from the content image. Feature-patch-
based Avatar-Net [10] uses a style decorator to make up the
content features by semantically aligning style features from
an arbitrary style image. However, because of the dependency
on patch size, it often fails to migrate both local and global
style patterns at the same time. Apart from this, Avatar-
Net has a poor performance on content structure preservation
(e.g., distorted face in row 3 in Fig. 7). SANET [9] applies
a style attention mechanism to align style features with
the content features. Though it can produce appealing style
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TABLE I
QUANTITATIVE EVALUATION RESULTS. RED AND BLUE INDICATE THE BEST AND SECOND-BEST PERFORMANCE

Fig. 10. Ablation studies on the effect of each loss in our contrastive style transfer, where w/o Ls , w/o Lcolor , w/o Lrs and w/o Lrc indicate removing the
instance-wise texture-related style loss, instance-wise color-related style loss, style identity loss and content identity loss, respectively.

TABLE II
QUANTITATIVE EVALUATION RESULTS FOR ABLATION STUDIES

Fig. 11. Comparison of DICF-CLAST and DICF [7]. Our DICF-CLAST
notably improves the color fidelity and overall visual quality.

textures most of the time, the detailed content structure is
often distorted (e.g., row 1, 3 in Fig. 7), and repeated patterns
occur occasionally. DICF [7] can well characterize content
details, but it sometimes suffers from severe color deviation
compared with corresponding style images (e.g., row 1, 2 in
Fig. 7). ArtFlow [11] adopts a projection flow network and
performs unbiased image style transfer, so it preserves the

Fig. 12. User preference benchmarking results. Our DICF-CLAST outper-
forms other state-of-the-art methods in all the three aspects.

content structure well. However, it cannot completely peel off
colors from the content image, remaining the color of the black
clothes in the third row.

Compared with these arbitrary style transfer methods,
DICF-CLAST achieves both pleasant structure preservation
and faithful style effects, demonstrating the effectiveness of
our contrastive style transfer scheme.

We show a more detailed comparison between AdaIN-
CLAST, SANET-CLAST, DICF-CLAST and their original
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Fig. 13. Comparison of style transfer results with NST. The result synthesized with our style encoder Es has a better color distribution and more vivid
textures.

TABLE III
EXECUTION TIME COMPARISON (IN SECONDS)

versions in Figs. 8, 9, and 11. For AdaIN, CLAST can
render more vivid style effects and better preserve shapes
and edges. For SANET, CLAST eliminates distorted structure
(e.g., unexpected eyes in row 2 in Fig. 9) and better balances
the content and style. For DICF, with CLAST, the colors are
more in line with the style image. In summary, our method
can improve the visual quality of stylization results to a large
extent.

2) Quantitative Comparison: Inspired by [21], we use the
Structural Similarity Index (SSIM) between original content
images and stylized images to measure the performance of
content preservation. Also, we use the Earth Mover’s Distance
(EMD) between the color histograms of original style images
and stylized images to measure the performance of color
migration. For each method, we use 20 content images and
15 style images to generate 300 results. We compute their
average SSIM, EMD, and ranks. As Table I shows, for
each metric, both the best and the second are our methods,
demonstrating the superiority of our method.

3) User Study: To evaluate human-eye visual effects,
we conduct a user study on Amazon Mechanical Turk. The
participants are requested to choose the best result among a
set of candidates in perspectives of content preservation, style
migration, and overall quality, respectively. We use 10 content
images and 20 style paintings to generate 200 results for
each method. Each content-style pair is assigned to 5 different
participants, summing up to 3,000 votes in total.

We show the percentage of votes for each method in Fig. 12.
The results demonstrate that our method outperforms other
methods in all three aspects.

C. Ablation Studies

We present the results of DICF-CLAST trained by various
loss combinations in Fig. 10, please zoom in to see details.
Discarding our instance-wise texture-related style loss Ls ,
the model fails to render the noise-like texture of the style

Fig. 14. Our stylization results synthesized from the same content image
and different artistic paintings. Our method can adaptively balance the content
and style according to the artistic painting.

Fig. 15. Our method generates blurry textures when the resolution of the
input style image is too high. This problem can be solved by manually
down-sampling the style image.

image compared with our full version. Besides, the colors
also degrade. Removing the instance-wise color-related style
loss Lcolor , the overall color distribution deviates obviously.
Abandoning the style reconstruction loss Lrs harms both the
maintenance of content structure and the migration of style
patterns. Without the content reconstruction loss Lrc, the
model cannot well preserve the detailed content structure.
Obvious ringing artifacts emerge as indicated by the red
arrows. In comparison, our full style transfer version achieves
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Fig. 16. Comparison results of three versions of our method, AdaIN-CLAST, SANET-CLAST and DICF-CLAST.

the best style transfer effect, demonstrating the effectiveness
of our loss designs.

Similar to the quantitative comparison conducted
in Sec. IV-B2, we additionally calculate the average
SSIM, EMD and ranks of each version. The quantitative
results are shown in Table II. Deleting our instance-wise
contrastive style losses results in terrible performance of
color migration. Notice that the average EMD of the version
without Lcolor is higher than that of the full version, which
further verifies that our instance-wise color-related style loss
Lcolor can help with color rendering. Meanwhile, chucking
the style reconstruction loss Lrs leads to both worse SSIM
and EMD. Dropping the content reconstruction loss Lrc
significantly harms the maintenance of the content structure.
In summary, the quantitative results also confirm that each of
our losses plays their own role.

D. Performance Analysis

1) Style Encoding: Most style transfer methods utilize the
pretrained VGG [53] to extract the style features. By com-
parison, exploring the natural contrastive relationships in style
transfer, our style encoder and projection heads automatically
learn robust and flexible style modelings. To demonstrate that
our style encoder can extract better artistic representations, we
conduct the optimization-based NST [1] with pretrained VGG
or our style encoder separately. We show the results in Fig. 13.
Compared with VGG, the result of our style encoder Es not
only better eliminates colors from the content image but also
contains more vivid textures.

In Sec. III-B, we apply color jittering and discoloration to
encourage the style encoder to extract both the color-related
and texture-related style. Otherwise, the samples can be easily
classified by simply distinguishing the colors, causing the style

encoder to ignore some texture information. To demonstrate
this with NST, we train another style encoder E ′

s without the
above mentioned step. As shown in Fig. 13, the result of E ′

s
has fewer textures and worse overall quality.

2) Content-Style Balance: Our modelings of content and
style are automatically learned with natural contrastive pairs,
therefore, our method can adaptively balance the content
and style. As shown in Fig. 14, our method can adjust the
content and style satisfactorily and synthesize vivid results.
For example, in the first three rows of Fig. 14, for the flat style
(2nd column), our result retains the clear buildings and smooth
sea surface; for the style with rich textures (3rd column), our
model renders vivid textures to match the strokes in the style
image.

3) Influence of the Style Transfer Module: We compare the
style transfer results synthesized by AdaIN-CLAST, SANET-
CLAST and DICF-CLAST in Fig. 16. Their only difference
is the selection of the style transfer module M . In the 1st
and 3rd row of Fig. 16, since DICF [7] is a newly-proposed
and powerful module, DICF-CLAST renders more vivid style
effects and more matching colors (e.g., in row 1, the sky
synthesized by AdaIN-CLAST retains some blue color, while
the stylization result produced by SANET-CLAST is less
appropriate on colors), the result is also more appealing
from the aspect of overall visual quality. However, for the
style of the 2nd row, due to the attention mechanism in
the SANET [9] module, only SANET-CLAST captures the
dark wine-red from the style image and generates the best
result.

In summary, our method has strengths and weaknesses
based on the properties of the selected style transfer module.
The conclusion is also in line with the quantitative comparison
results conducted in Sec IV-B2. The style transfer module
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should be chosen according to both the specific application
scenario and the specialties of style transfer modules.

E. Runtime Analysis

Tab. III shows the runtime performance of our methods and
other state-of-the-art arbitrary style transfer methods. We cal-
culate the execution time by averaging the time to generate
100 stylized images. The input content and style images are
all 512 × 512 resolution. It is clear that after applying our
CLAST, AdaIN-CLAST and DICF-CLAST remain almost the
same efficiency as the original algorithms. Particularly, our
SANET-CLAST is nearly 2 times faster than SANET [9]. Our
method can feasibly process style transfer in real time with
various style transfer modules.

F. Limitation

Since the receptive field of the style encoder is limited,
our method does not perform well on high-resolution style
images. In Fig. 15, the resolution of the input style image is
1024 × 1550. Accordingly, the texture of our result is blurry.
This problem can be easily solved by down-sampling the style
image. By automatically resizing the shortest edge to 384, the
pencil drawing texture becomes vivid and obvious.

Another limitation is that, although our method achieves
superior performance, the training process is slightly com-
plicated and requires large-scale training datasets. In the
future, we will explore how to get rid of the dependence on
pre-training processes and large-scale training datasets, such
as zero-shot learning [57].

V. CONCLUSION

In this paper, we introduce contrastive learning into arbitrary
style transfer. We point out that the style can be determined
through comparing distinct painting instances, while the con-
tent is the patch-level correspondence between the style trans-
fer result and the content image. On this basis, we construct
the style and content encoders and propose a new framework
for style transfer. Our pluggable losses and training strategies
can be applied to various style transfer methods. Experimental
results demonstrate not only the effectiveness, but also the
superiority and flexibility of our new framework and loss
designs. We believe that our work can inspire subsequent style
transfer algorithms.
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